Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.

Identifieur interne : 004891 ( Main/Exploration ); précédent : 004890; suivant : 004892

Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.

Auteurs : D R Gang [États-Unis] ; H. Kasahara ; Z Q Xia ; K. Vander Mijnsbrugge ; G. Bauw ; W. Boerjan ; M. Van Montagu ; L B Davin ; N G Lewis

Source :

RBID : pubmed:10066819

Descripteurs français

English descriptors

Abstract

Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.

DOI: 10.1074/jbc.274.11.7516
PubMed: 10066819


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.</title>
<author>
<name sortKey="Gang, D R" sort="Gang, D R" uniqKey="Gang D" first="D R" last="Gang">D R Gang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340</wicri:regionArea>
<wicri:noRegion>Washington 99164-6340</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kasahara, H" sort="Kasahara, H" uniqKey="Kasahara H" first="H" last="Kasahara">H. Kasahara</name>
</author>
<author>
<name sortKey="Xia, Z Q" sort="Xia, Z Q" uniqKey="Xia Z" first="Z Q" last="Xia">Z Q Xia</name>
</author>
<author>
<name sortKey="Vander Mijnsbrugge, K" sort="Vander Mijnsbrugge, K" uniqKey="Vander Mijnsbrugge K" first="K" last="Vander Mijnsbrugge">K. Vander Mijnsbrugge</name>
</author>
<author>
<name sortKey="Bauw, G" sort="Bauw, G" uniqKey="Bauw G" first="G" last="Bauw">G. Bauw</name>
</author>
<author>
<name sortKey="Boerjan, W" sort="Boerjan, W" uniqKey="Boerjan W" first="W" last="Boerjan">W. Boerjan</name>
</author>
<author>
<name sortKey="Van Montagu, M" sort="Van Montagu, M" uniqKey="Van Montagu M" first="M" last="Van Montagu">M. Van Montagu</name>
</author>
<author>
<name sortKey="Davin, L B" sort="Davin, L B" uniqKey="Davin L" first="L B" last="Davin">L B Davin</name>
</author>
<author>
<name sortKey="Lewis, N G" sort="Lewis, N G" uniqKey="Lewis N" first="N G" last="Lewis">N G Lewis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10066819</idno>
<idno type="pmid">10066819</idno>
<idno type="doi">10.1074/jbc.274.11.7516</idno>
<idno type="wicri:Area/Main/Corpus">004931</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004931</idno>
<idno type="wicri:Area/Main/Curation">004931</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004931</idno>
<idno type="wicri:Area/Main/Exploration">004931</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.</title>
<author>
<name sortKey="Gang, D R" sort="Gang, D R" uniqKey="Gang D" first="D R" last="Gang">D R Gang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340</wicri:regionArea>
<wicri:noRegion>Washington 99164-6340</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kasahara, H" sort="Kasahara, H" uniqKey="Kasahara H" first="H" last="Kasahara">H. Kasahara</name>
</author>
<author>
<name sortKey="Xia, Z Q" sort="Xia, Z Q" uniqKey="Xia Z" first="Z Q" last="Xia">Z Q Xia</name>
</author>
<author>
<name sortKey="Vander Mijnsbrugge, K" sort="Vander Mijnsbrugge, K" uniqKey="Vander Mijnsbrugge K" first="K" last="Vander Mijnsbrugge">K. Vander Mijnsbrugge</name>
</author>
<author>
<name sortKey="Bauw, G" sort="Bauw, G" uniqKey="Bauw G" first="G" last="Bauw">G. Bauw</name>
</author>
<author>
<name sortKey="Boerjan, W" sort="Boerjan, W" uniqKey="Boerjan W" first="W" last="Boerjan">W. Boerjan</name>
</author>
<author>
<name sortKey="Van Montagu, M" sort="Van Montagu, M" uniqKey="Van Montagu M" first="M" last="Van Montagu">M. Van Montagu</name>
</author>
<author>
<name sortKey="Davin, L B" sort="Davin, L B" uniqKey="Davin L" first="L B" last="Davin">L B Davin</name>
</author>
<author>
<name sortKey="Lewis, N G" sort="Lewis, N G" uniqKey="Lewis N" first="N G" last="Lewis">N G Lewis</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>DNA, Complementary (MeSH)</term>
<term>Furans (chemistry)</term>
<term>Furans (metabolism)</term>
<term>Lignans (MeSH)</term>
<term>Lignin (chemistry)</term>
<term>Lignin (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Oxidoreductases Acting on CH-CH Group Donors (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Stereoisomerism (MeSH)</term>
<term>Trees (enzymology)</term>
<term>Trees (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (MeSH)</term>
<term>Arbres (enzymologie)</term>
<term>Arbres (métabolisme)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Furanes (composition chimique)</term>
<term>Furanes (métabolisme)</term>
<term>Lignanes (MeSH)</term>
<term>Lignine (composition chimique)</term>
<term>Lignine (métabolisme)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxidoreductases acting on CH-CH group donors (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Stéréoisomérie (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Furans</term>
<term>Lignin</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Furans</term>
<term>Lignin</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA, Complementary</term>
<term>Lignans</term>
<term>Oxidoreductases Acting on CH-CH Group Donors</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Furanes</term>
<term>Lignine</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arbres</term>
<term>Furanes</term>
<term>Lignine</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Cloning, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Sequence Homology, Amino Acid</term>
<term>Stereoisomerism</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Lignanes</term>
<term>Oxidoreductases acting on CH-CH group donors</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Stéréoisomérie</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10066819</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>274</Volume>
<Issue>11</Issue>
<PubDate>
<Year>1999</Year>
<Month>Mar</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.</ArticleTitle>
<Pagination>
<MedlinePgn>7516-27</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gang</LastName>
<ForeName>D R</ForeName>
<Initials>DR</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kasahara</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Z Q</ForeName>
<Initials>ZQ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vander Mijnsbrugge</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bauw</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boerjan</LastName>
<ForeName>W</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Van Montagu</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Davin</LastName>
<ForeName>L B</ForeName>
<Initials>LB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lewis</LastName>
<ForeName>N G</ForeName>
<Initials>NG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AF242490</AccessionNumber>
<AccessionNumber>AF242491</AccessionNumber>
<AccessionNumber>AF242492</AccessionNumber>
<AccessionNumber>AF242493</AccessionNumber>
<AccessionNumber>AF242494</AccessionNumber>
<AccessionNumber>AF242495</AccessionNumber>
<AccessionNumber>AF242496</AccessionNumber>
<AccessionNumber>AF242497</AccessionNumber>
<AccessionNumber>AF242498</AccessionNumber>
<AccessionNumber>AF242499</AccessionNumber>
<AccessionNumber>AF242500</AccessionNumber>
<AccessionNumber>AF242501</AccessionNumber>
<AccessionNumber>AF242502</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005663">Furans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017705">Lignans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>73XCE5OZB0</RegistryNumber>
<NameOfSubstance UI="C060282">lariciresinol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.348</RegistryNumber>
<NameOfSubstance UI="C071072">vestitone reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.3.-</RegistryNumber>
<NameOfSubstance UI="D044925">Oxidoreductases Acting on CH-CH Group Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.97.-</RegistryNumber>
<NameOfSubstance UI="C118150">phenylcoumaran benzylic ether reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>V4N1UDY811</RegistryNumber>
<NameOfSubstance UI="C103298">pinoresinol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CitationSubset>S</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005663" MajorTopicYN="N">Furans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017705" MajorTopicYN="Y">Lignans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044925" MajorTopicYN="Y">Oxidoreductases Acting on CH-CH Group Donors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013237" MajorTopicYN="N">Stereoisomerism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NASA">
<Keyword MajorTopicYN="N">Non-programmatic</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>3</Month>
<Day>6</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10066819</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.274.11.7516</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bauw, G" sort="Bauw, G" uniqKey="Bauw G" first="G" last="Bauw">G. Bauw</name>
<name sortKey="Boerjan, W" sort="Boerjan, W" uniqKey="Boerjan W" first="W" last="Boerjan">W. Boerjan</name>
<name sortKey="Davin, L B" sort="Davin, L B" uniqKey="Davin L" first="L B" last="Davin">L B Davin</name>
<name sortKey="Kasahara, H" sort="Kasahara, H" uniqKey="Kasahara H" first="H" last="Kasahara">H. Kasahara</name>
<name sortKey="Lewis, N G" sort="Lewis, N G" uniqKey="Lewis N" first="N G" last="Lewis">N G Lewis</name>
<name sortKey="Van Montagu, M" sort="Van Montagu, M" uniqKey="Van Montagu M" first="M" last="Van Montagu">M. Van Montagu</name>
<name sortKey="Vander Mijnsbrugge, K" sort="Vander Mijnsbrugge, K" uniqKey="Vander Mijnsbrugge K" first="K" last="Vander Mijnsbrugge">K. Vander Mijnsbrugge</name>
<name sortKey="Xia, Z Q" sort="Xia, Z Q" uniqKey="Xia Z" first="Z Q" last="Xia">Z Q Xia</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Gang, D R" sort="Gang, D R" uniqKey="Gang D" first="D R" last="Gang">D R Gang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004891 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004891 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:10066819
   |texte=   Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:10066819" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020